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On the basis of the dynamic equations of the Jeffcott rotor–stator model with imbalance,
the reliability sensitivity of the rotor–stator systems with rubbing is examined. A statistical
fourth moment method is developed to determine the first four moments of system
response and state function. The distribution function of the system state function is
approximately determined by the standard normal distribution functions using the
Edgeworth series technique. The reliability and reliability sensitivity are obtained and the
effect on reliability and reliability sensitivity of shaft stiffness and damping, stator stiffness
and damping, radial clearance and stator radial stiffness is studied. Numerical results are
also presented and discussed.
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1. INTRODUCTION

The study of reliability sensitivity of rotor–stator systems with uncertain parameters and
rubbing is important for design purposes. Reliability sensitivity analysis can help the
designer to select acceptable tolerances and parameters on rotor–stator systems. The main
problem that concerns the designer is how to govern the fluctuations of the system
parameters for safe operation. Parameter uncertainty is inherent in most engineering
problems, and its effect on system reliability and reliability sensitivity should be assessed.
The reliability problem has been addressed in a number of publications e.g., reference [1]
and papers e.g., references [2–15]. These monographs and papers have made contributions
to the research of response and reliability problems in linear and non-linear vibration
systems and systems with random parameters. A set useful sensitivity analysis in vibration
reliability has practical applications within reliability-based design, in optimization of
structural design, construction, maintenance and inspection under reliability constraints,
in parameter studies of the reliability, and in reliability updating. Structural reliability
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sensitivity calculation methods are well developed [16–18]. These publications have
presented the efficient and accurate computational reliability sensitivity methods.

Rotor rubbing, that is, due to a rotor interacting with the stator, is the source to a
variety of different phenomena. Rubbing phenomenon occurs when a rotating element
eventually hits a stationary part in rotating machinery. The performance of rotating
machinery can be enhanced by increasing the rotor speed and decreasing the radial
clearance between rotating and non-rotating parts. This leads to an increased risk of
rubbing contacts. Causes of rubbing can be imbalances, thermal misalignment, rotor/
stator relative motion, fluid-dynamic forces producing instabilities and self-excited
vibrations. It is therefore important to gain basic knowledge about different rubbing-
related phenomena, in order to improve the design or to recognize and identify these
phenomena if they occur in a real machinery. Rotor rubbing is the source of numerous
different phenomena, for example sub- and super-harmonic vibrations, amplitude jumps
and rotor instability. Rubbing analysis involves various aspects such as impact, contact
stiffness, friction, thermal effects, and contact dynamics. The rotor rubbing phenomenon
has previously been studied by e.g., references [19–24].

In the present work, details of a numerical solution for the reliability sensitivity of non-
linear vibration rotor–stator systems with rubbing are given. The method can modify
demands to the distribution function of random parameters and the excitation forms. The
first four moments of the response and the state function are obtained using the statistical
fourth moment method. The unknown distribution function of the random state function
is approximately determined by the standard normal distribution functions using the
Edgeworth series technique. The reliability and the reliability sensitivity function of
uncertain rotor–stator systems with a rubbing failure mode are solved.

2. ROTOR–STATOR MODEL

Figure 1 shows Jeffcott vertical rotor–stator shaft model, which the stator offset can be
ignored and is commonly used when rubbing related phenomena is studied. It consists of
the shaft stiffness k1 and damping c1 carrying a disk with mass m1 at the middle of the
span. Damping in the rotor systems arises generally due to the oil film in shaft bearing.
The rotor runs in a stator. The mass, stiffness and damping of the stator are m2; k2 and c2
respectively. The center unbalance distance of the disk is e from the geometrical center of
the disk. The stator radial stiffness is represented by kr: The radial clearance between the
Figure 1. Rotor–stator system model.
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rotor and the stator is denoted by d: The stator offset is not considered. The rotor speed is
denoted by o: All elements are isotropic.

When the radial displacement, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ2 þ ðy1 � y2Þ2

q
; of the rotor is less than d;

no contact occurs, and the dynamics of the rotor–stator systems is governed by the
ordinary equations of motion. When the radial displacement, r; of the rotor is greater than
d and the rotor rubs the stator, more complicated governing equations must be used.

The positive pressure and friction force between the rotor and the stator are represented
by FN and FT ; and the Coulomb friction model is used. In xoy reference frame, the forces
Fx and Fy are represented as

FN ¼ ðr � dÞkr

FT ¼ fFN

(
ðr > dÞ and

Fx ¼ �FN cos gþ FT sin g;

Fy ¼ �FN sin g� FT cos g;

(

where sin g ¼ ðy1 � y2Þ=r; cos g ¼ ðx1 � x2Þ=r: Thus,

Fx ¼ 0

Fy ¼ 0

(
ðr4dÞ

Fx ¼ kr

r � d
r

� �
½x2 � x1 þ f ðy1 � y2Þ�

Fy ¼ kr

r � d
r

� �
½y2 � y1 � f ðx1 � x2Þ�

8>>><
>>>:

ðr > dÞ; ð1Þ

where f is the coefficient of friction.
The following governing equations [25] are used when the radial displacement of the

rotor r is greater than the radial clearance d is

m1 .xx1 þ c1 ’xx1 þ k1x1 ¼ m1eo2 cosot þ Fx;

m1 .yy1 þ c1 ’yy1 þ k1y1 ¼ m1eo2 sinot þ Fy;

m2 .xx2 þ c2 ’xx2 þ k2x2 ¼ �Fx;

m2 .yy2 þ c2 ’yy2 þ k2y2 ¼ �Fy: ð2Þ

Equation (2) is then written as

m1 0 0 0

0 m1 0 0

0 0 m2 0

0 0 0 m2

2
6664

3
7775

.xx1

.yy1

.xx2

.yy2

8>>><
>>>:

9>>>=
>>>;

þ

c1 0 0 0

0 c1 0 0

0 0 c2 0

0 0 0 c2

2
6664

3
7775

’xx1

’yy1

’xx2

’yy2

8>>><
>>>:

9>>>=
>>>;

þ

k1 0 0 0

0 k1 0 0

0 0 k2 0

0 0 0 k2

2
6664

3
7775

0
BBB@

þ krðr � dÞ
r

1 �f �1 f

f 1 �f �1

�1 f 1 �f

�f �1 f 1

2
6664

3
7775
1
CCCA

x1

y1

x2

y2

8>>><
>>>:

9>>>=
>>>;

¼ m1eo2

cosot

sinot

0

0

8>>><
>>>:

9>>>=
>>>;
: ð3Þ

3. RANDOM RESPONSE ANALYSIS

Equation (3) is expressed in the form of a generalized matrix as

M.qqþ C’qqþ ðKþ KrÞq ¼ FðtÞ; ð4Þ
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where

M ¼

m1 0 0 0

0 m1 0 0

0 0 m2 0

0 0 0 m2

2
6664

3
7775; C ¼

c1 0 0 0

0 c1 0 0

0 0 c2 0

0 0 0 c2

2
6664

3
7775; K ¼

k1 0 0 0

0 k1 0 0

0 0 k2 0

0 0 0 k2

2
6664

3
7775;

Kr ¼
krðr � dÞ

r

1 �f �1 f

f 1 �f �1

�1 f 1 �f

�f �1 f 1

2
6664

3
7775; FðtÞ ¼ m1eo2

cosot

sinot

0

0

8>>><
>>>:

9>>>=
>>>;
;

.qq ¼

.xx1

.yy1

.xx2

.yy2

8>>><
>>>:

9>>>=
>>>;
; ’qq ¼

’xx1

’yy1

’xx2

’yy2

8>>><
>>>:

9>>>=
>>>;
; q ¼

x1

y1

x2

y2

8>>><
>>>:

9>>>=
>>>;
;

In the common rotor–stator system application, the matrices M, C, K, Kr and F are,
respectively, the mass, damping, shaft stiffness and stator radial stiffness matrices of the
system and the external force vector. Obviously, the above equations are vector-valued
and matrix-valued function equations that take B ¼ ½bij �s�t matrix as variable.

If the vector Aðp�1Þ is a function of a matrix Bðs�tÞ; then the second order Taylor
expansion of A about a nominal value %BB of B is given by Vetter [26] and Brewer [27]

AðBÞ ¼ Að %BBÞ þ @A

@ðcsBÞT

�����
B¼ %BB

d csðBÞ½ � þ 1

2

@2A

@ðcsBÞT2

�����
B¼ %BB

fd csðBÞ½ � 2½ �g; ð5Þ

where the probabilistic effects are described through the random parameter matrix B ¼
½bij�s�t of order s � t: This can include the probabilistic distributions of all discretized
random variable properties. cs(B) is the column string of matrix B. d½csðBÞ�½2� ¼ d½csðBÞ� �
d½csðBÞ� is the second order Kronecker power of d½csðBÞ�: � represents the Kronecker
product. T represent the transpose of a matrix and @2A=@ðcsBÞT2 ¼ @2A=@½ðcsBÞT�2:

To derive the matrix equations for non-linear structural dynamics, the following
notation is used. For a given vector-valued and matrix-valued function, A(B), and a small
parameter e: %BB ¼ EðBÞ is mean value matrix of B, i.e., the expectation matrix Eð Þ of B.
dB ¼ eDB ¼ eðB� %BBÞ is a first order variation matrix of B about %BB: ½dB�½2� ¼ e2DB½2� ¼
e2ðB� %BBÞ½2� is a second order variation matrix about %BB: %AA ¼ Að %BBÞ is a value (vector-valued
and matrix-valued function A evaluated at %BB).

The matrices of both sides of equation (4) are expanded about %BB via Taylor series

M.qq ¼ %MM%.qq.qqþ @ %MM

@ðcsBÞT
ðIst � %.qq.qqÞ

"
þ %MM

@ %.qq.qq

@ðcsBÞT

#
dðcsBÞ

þ 1

2

@2 %MM

@ðcsBÞT2
ð

"
Is2t2 � %.qq.qqÞ þ @ %MM

@ðcsBÞT
@ %.qq.qq

@ðcsBÞT
� Ist

 !

þ @ %MM

@ðcsBÞT
Ist �

@ %.qq.qq

@ðcsBÞT

 !
þ %MM

@2 %.qq.qq

@ðcsBÞT2

#
½dðcsBÞ�½2�; ð6Þ
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C’qq ¼ %CC%’qq’qqþ @ %CC

@ðcsBÞT
ðIst � %’qq’qqÞ

"
þ %CC

@ %’qq’qq

@ðcsBÞT

#
dðcsBÞ þ 1

2

@2 %CC

@ðcsBÞT2
ðIs2t2 � %’qq’qqÞ

"

þ @ %CC

@ðcsBÞT
@ %’qq’qq

@ðcsBÞT
� Ist

 !
þ @ %CC

@ðcsBÞT
Ist �

@ %’qq’qq

@ðcsBÞT

 !
þ %CC

@2 %’qq’qq

@ðcsBÞT2

#
½dðcsBÞ�½2�; ð7Þ

ðKþ KrÞq ¼ð %KKþ %KKrÞ%qqþ
@ð %KKþ %KKrÞ
@ðcsBÞT

ðIst � %qqÞ þ ð %KKþ %KKrÞ
@ %qq

@ðcsBÞT

" #
dðcsBÞ

þ 1

2

@2ð %KKþ %KKrÞ
@ðcsBÞT2

ðIs2t2 � %qqÞ
"

þ @ð %KKþ %KKrÞ
@ðcsBÞT

@ %qq

@ðcsBÞT
� Ist

 !

þ @ð %KKþ %KKrÞ
@ðcsBÞT

Ist �
@ %qq

@ðcsBÞT

 !
þ ð %KKþ %KKrÞ

@2 %qq

@ðcsBÞT2

#
dðcsBÞ½ �½2�; ð8Þ

F ¼ %FFþ @ %FF

@ðcsBÞT
dðcsBÞ þ 1

2

@2 %FF

@ðcsBÞT2
½dðcsBÞ�½2�: ð9Þ

Substituting equations (6)–(9) into equation (4), the zeroth order, first order, and second
order equations corresponding to equation (4) are

Zeroth order

%MM%.qq.qqþ %CC%’qq’qqþ ð %KKþ %KKrÞ%qq ¼ %FF: ð10Þ

First order (e terms)

%MM.qq1 þ %CC’qq1 þ ð %KKþ %KKrÞq1 ¼ %FF1; ð11Þ

where

.qq1 ¼
@ %.qq.qq

@ðcsBÞT
½csðB� %BBÞ�; ð12Þ

’qq1 ¼
@ %’qq’qq

@ðcsBÞT
½csðB� %BBÞ�; ð13Þ

q1 ¼
@ %qq

@ðcsBÞT
½csðB� %BBÞ�; ð14Þ

F1 ¼
@ %FF

@ðcsBÞT
� @ %MM

@ðcsBÞT
ðIst � %.qq.qqÞ � @ %CC

@ðcsBÞT
ðIst � %’qq’qqÞ

"

�@ðKþ KrÞ
@ðcsBÞT

ðIst � %qqÞ
#
½csðB� %BBÞ�: ð15Þ

Second order (e2 terms)

%MM%.qq.qq2 þ %CC%’qq’qq2 þ ð %KKþ %KKrÞ%qq2 ¼ %FF2; ð16Þ
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where

%.qq.qq2 ¼
1

2

@2 %.qq.qq

@ðcsBÞT2
½VarðcsBÞ�; ð17Þ

%’qq’qq2 ¼
1

2

@2 %’qq’qq

@ðcsBÞT2
½VarðcsBÞ�; ð18Þ

%qq2 ¼
1

2

@2 %qq

@ðcsBÞT2
½VarðcsBÞ�; ð19Þ

%FF2 ¼
1

2

@2 %FF

@ðcsBÞT2

"
� @2 %MM

@ðcsBÞT2
ðIs2t2 � %.qq.qqÞ � @ %MM

@ðcsBÞT
@ %.qq.qq

@ðcsBÞT
� Ist

 !

� @ %MM

@ðcsBÞT
Ist �

@ %.qq.qq

@ðcsBÞT

 !
� @2 %CC

@ðcsBÞT2
ðIs2t2 � %’qq’qqÞ

� @ %CC

@ðcsBÞT
@ %’qq’qq

@ðcsBÞT
� Ist

 !
� @ %CC

@ðcsBÞT
Ist �

@ %’qq’qq

@ðcsBÞT

 !
� @2ð %KKþ %KKrÞ

@ðcsBÞT2
ðIs2t2 � %qqÞ

� @ð %KKþ %KKrÞ
@ðcsBÞT

@ %qq

@ðcsBÞT
� Ist

 !
� @ð %KKþ %KKrÞ

@ðcsBÞT
Ist �

@ %qq

@ðcsBÞT

 !
: ð20Þ

Once %.qq.qq; %’qq’qq; %qq and %.qq.qq2;
%’qq’qq2; %qq2 are obtained, and .qq1; ’qq1; q1 are determined, the mean value,

variance, third order moment and fourth order moment of the responses can be computed.
They are represented as

Eð.qqÞ ¼ %.qq.qqþ %.qq.qq2; ð21Þ

Eð’qqÞ ¼ %’qq’qqþ %’qq’qq2; ð22Þ

EðqÞ ¼ %qqþ %qq2; ð23Þ

Varð.qqÞ ¼ Eð.qq1 � .qq1Þ ¼
@ %.qq.qq

@ðcsBÞT

" #½2�
½VarðcsBÞ�; ð24Þ

Varð’qqÞ ¼ Eð’qq1 � ’qq1Þ ¼
@ %’qq’qq

@ðcsBÞT

" #½2�
½VarðcsBÞ�; ð25Þ

VarðqÞ ¼ Eðq1 � q1Þ ¼
@ %qq

@ðcsBÞT

" #½2�
½VarðcsBÞ�; ð26Þ

Tmð.qqÞ ¼ Eð.qq1 � .qq1 � .qq1Þ ¼
@ %.qq.qq

@ðcsBÞT

" #½3�
½TmðcsBÞ�; ð27Þ

Tmð’qqÞ ¼ Eð’qq1 � ’qq1 � ’qq1Þ ¼
@ %’qq’qq

@ðcsBÞT

" #½3�
½TmðcsBÞ�; ð28Þ
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TmðqÞ ¼ Eðq1 � q1 � q1Þ ¼
@ %qq

@ðcsBÞT

" #½3�
½TmðcsBÞ�; ð29Þ

Fmð.qqÞ ¼ Eð.qq1 � .qq1 � .qq1 � .qq1Þ ¼
@ %.qq.qq

@ðcsBÞT

" #½4�
½FmðcsBÞ�; ð30Þ

Fmð’qqÞ ¼ Eð’qq1 � ’qq1 � ’qq1 � ’qq1Þ ¼
@ %’qq’qq

@ðcsBÞT

" #½4�
½FmðcsBÞ�: ð31Þ

FmðqÞ ¼ Eðq1 � q1 � q1 � q1Þ ¼
@ %qq

@ðcsBÞT

" #½4�
½FmðcsBÞ�: ð32Þ

In order to get the derivation matrix @ %.qq.qq=@ðcsBÞT; @ %’qq’qq=@ðcsBÞT; @ %qq=@ðcsBÞT substituting
equations (12)–(14) into equation (11) and equating corresponding terms, the following
sensitivity equations are obtained

%MM
@ %.qq.qq

@bij

þ %CC
@ %’qq’qq

@bij

þ ð %KKþ %KKrÞ
@q

@bij

¼ @ %FF

@bij

� @ %MM

@bij

%.qq.qq� @ %CC

@bij

%’qq’qq� @ð %KKþ %KKrÞ
@bij

%qq

ði ¼ 1; 2; . . . ; s; j ¼ 1; 2; . . . ; tÞ: ð33Þ
Thus, the derivation matrices @ %.qq.qq=@ðcsBÞT; @ %’qq’qq=@ðcsBÞT; @ %qq=@ðcsBÞT can be represented as

@ %.qq.qq

@ðcsBÞT
¼ @ %.qq.qq

@b11
� � � @ %.qq.qq

@bs1
� � � @ %.qq.qq

@b1t

� � � @ %.qq.qq

@bst

� �
; ð34Þ

@ %’qq’qq

@ðcsBÞT
¼ @ %’qq’qq

@b11
� � � @ %’qq’qq

@bs1
� � � @ %’qq’qq

@b1t

� � � @ %’qq’qq

@bst

� �
; ð35Þ

@ %qq

@ðcsBÞT
¼ @ %qq

@b11
� � � @ %qq

@bs1
� � � @ %qq

@b1t

� � � @ %qq

@bst

� �
: ð36Þ

Substituting equations (34)–(36) into equations (24)–(32), the variance matrices
Varð.qqÞ;Varð’qqÞ;VarðqÞ; the third order moment matrices Tmð.qqÞ;Tmð’qqÞ; TmðqÞ; and fourth
order moment matrices Fmð.qqÞ; Fmð’qqÞ; FmðqÞ of .qq; ’qq; q are obtained. Obviously,
equations (21)–(23) are accurate to second order and equations (24)–(32) to first order.

The similar problem has been described in papers [28–30].

4. RELIABILITY ANALYSIS

A fundamental problem in reliability analysis is the computation of the integral of the
reliability R

R ¼
Z

g d;rð Þ>0

f ðZÞ dZ ð37Þ

in which f(Z) denotes the joint probability density function of the random response,

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ2 þ ðy1 � y2Þ2

q
; and radial clearance, d; between the rotor and the stator.

gðd; rÞ defines the state function, representing the safe state and failure state

g d; rð Þ40 failurestate;

g d; rð Þ > 0 safestate;
ð38Þ
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where gðd; rÞ ¼ 0 is the limit-state equation, representing limit-state surface or failure
surface. Equation (38) is expressed as

gðd; rÞ ¼ d� r; ð39Þ
where the response, r; and the threshold, d; are mutually independent random variables.
The first fourth order moments of the state function gðd; rÞ are determined as

mg ¼ E½gðd; rÞ� ¼ EðdÞ � EðrÞ ¼ md � mr; ð40Þ

s2g ¼ Var½gðd; rÞ� ¼ s2d þ s2r ; ð41Þ

yg ¼ E½gðd; rÞ � %ggðd; rÞ�3 ¼ yd � yr; ð42Þ

Zg ¼ E½gðd; rÞ � %ggðd; rÞ�4 ¼ Zd þ Zr þ 6s2ds
2
r ; ð43Þ

The reliability index is defined as

b ¼
mg

sg

: ð44Þ

The superposition principle cannot be applied to non-linear systems. In other words, the
input of the normal distribution cannot be obtained from the output of the normal
distribution. Thus, it is very difficult to obtain the distribution function of the response
and the reliability. The arbitrary distribution function of the standard random variables
that is approximately expressed which turns into the standard normal distribution
function using the Edgeworth series is addressed by Cramer [31].

FðyÞ ¼ FðyÞ � jðyÞ
"
1

6

yg

s3g
H2ðyÞþ

1

24

Zg

s4g
� 3

 !
H3ðyÞ þ

1

72

yg

s3g

 !2

H5ðyÞ
#
; ð45Þ

where Fð Þ is the standard normal distribution function. HjðyÞ is the j-order Hermite
polynomials and the recursion relation is

Hjþ1ðyÞ ¼ yHjðyÞ � jHj�1ðyÞ;
H0ðyÞ ¼ 1; H1ðyÞ ¼ y: ð46Þ

Thus, the reliability of the system is given by

R ¼ P½gðd; rÞ > 0� ¼ FðbÞ: ð47Þ

When equation (47) is used to determined the reliability of the system. It is possible that
R > 1: To eliminate such situation, the following definition will be used.

R ¼ F ðbÞ ¼ FðbÞ � FðbÞ � FðbÞ
1þ FðbÞ � FðbÞ½ �bf gb

ð48Þ

According to reliability theory, the reliability, R; is between 0 and 1, namely, 04R41:
Amendatory expression (48) can ensure the reliability, R; to satisfy 04R41 gradually and
accurately.

5. RELIABILITY SENSITIVITY ANALYSIS

When executing a systemic non-linear vibration reliability analysis, the response and
reliability of the system are modelled as random process. The stochastic process is usually
difficult to obtain the exact probability density functions or is described by subjectively
chosen distribution. In this paper, the Edgeworth series is used to approximately



RELIABILITY SENSITIVITY FOR ROTOR–STATOR SYSTEMS 1103
determine the distribution function of the system response and state function. It is
therefore of interest to study the sensitivity in the reliability to changes in the statistic
characteristics of the response, such as mean value and standard variance, etc.

It is of interest to establish the sensitivity from the system reliability analysis. The
reliability sensitivity with respect to the mean value of the system response is
approximately derived as follows:

DR

Dmr

¼ � j bð Þ
sg

1þ b
1

6

yg

s3g
H2 bð Þ þ 1

72

yg

s3g

 !2

H5 bð Þ

3
5 1

24

Zg

s4g
� 3

 !
H3 bð Þ

2
4

8<
:

�
"
1

3

yg

s3g
H1 bð Þ þ 1

8

Zg

s4g
� 3

 !
H2 bð Þþ 5

72

yg

s3g

 !2

H4 bð Þ
#9=
;: ð49Þ

The reliability sensitivity with respect to the standard variance of the system response is
approximately derived as follows:

DR

Dsr

¼ �
2mgsr

s2g
jðbÞ 1þ b

"
1

6

yg

s3g
H2ðbÞþ

(
1

24

Zg

s4g
� 3

 !
H3ðbÞ þ

1

72

yg

s3g

 !2

H5ðbÞ
#

� 1

3

yg

s3g
H1ðbÞ þ

1

8

Zg

s4g
� 3

 !
H2ðbÞþ

5

72

yg

s3g

 !2

H4ðbÞ

3
5
9=
;

2
4

þ 2srj bð Þ 1

2

yg

s4g
H2ðbÞ

"
þ 1

6

Zg

s5g
H3ðbÞþ

1

12

y2g
s7g

H5ðbÞ
#
� s2dsr

2s4g
jðbÞH3ðbÞ: ð50Þ

Substituting the known conditions and the results derived earlier into equations (49) and
(50), the reliability sensitivity DR=Dmr and DR=Dsr are obtained.

6. NUMERICAL EXAMPLE

The random parameters k1; k2; c1; c2; e; kr of one rotor–stator system are normally
distributed with a coefficient of variation equal to 0�05. The mean values of the parameters
are k1 ¼ k2¼ 4�6� 103 N/mm, c1 ¼ c2¼ 1�2� 102 N s/mm, kr¼ 9�2� 103 N/mm,
e ¼ 0�25mm respectively. The first four order moments of the clearance, d; are 3�0mm,
0�41mm, 0�28mm3, 0�17mm4. The deterministic parameters m1; m2; f ; o are m1 ¼ 10�0 kg,
m2 ¼ 20�0 kg, f ¼ 0�12; o ¼ 250�0 rad/s, respectively. The random parameter matrix is
B ¼ ðk1 c1 k2 c2 e krÞT:

The equations for each order derived earlier are solved by the implicit Newmark-b
method. The reliabilities R of the rotor system with the mean value and the standard
variance of the system response r are depicted in Figures 2 and 3, and the reliability
sensitivities DR=Dmr and DR=Dsr with the time (t) are depicted in Figures 4 and 5.

In practice, the exact joint probability density functions are often unavailable or difficult
to obtain for reasons of insufficient data. Not infrequently, the available data may only be
sufficient to evaluate the first few moments. This method has proven to be efficient in
probabilistic mechanics. A major advantage of these techniques is that the joint
probability density or distribution functions need not be known, but only the first four
moments. The method can alleviate the need for the distribution function of random
parameters and the excitation forms. The method is useful in the reliability design and
reliability optimization design of rotor–stator systems.
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0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

0.95

0.96

0.97

0.98

0.99

1.00

R
el

ia
bi

lit
y

Standard variance of radial displacement r

Figure 3. The reliability R with the standard variance of the system response r:
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It may be safely said that the reliability sensitivity of the rotor systems with the random
parameters has been solved in this paper. Numerical results are presented, and these
results are reliable and accurate.

7. CONCLUSION

This paper presents an approximate solution technique for the reliability sensitivity of
non-linear random vibration rotor–stator systems with rubbing. Techniques from the
matrix calculus, the Kronecker algebra, the fourth moment analysis notation and the
second order perturbations are employed to systematically develop a theoretical model
and numerical formulae of the dynamical behavior of the rotor–stator systems with
rubbing. In particular, the influence of the shaft stiffness and damping, the stator stiffness
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Figure 4. The reliability sensitivity DR=Dmr with respect to the mean value of the system response r:
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Figure 5. The reliability sensitivity DR=Dmr with respect to the standard variance of the system response r:
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and damping, the radial clearance between the rotor and the stator, and the stator radial
stiffness for the reliability and the reliability sensitivity of system is studied. The reliability
sensitivity problem of non-linear random vibration is solved and ideal numerical results
are obtained.
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APPENDIX A: NOMENCLATURE

The following symbols are used in this paper:

B random parameter matrix
c1 damping coefficient of the shaft
c2 damping coefficient of the stator
C damping matrix
Cov covariance
e the center unbalance distance of the disk
E mean value
f the friction coefficient
f ðZÞ probability density function

FN positive pressure
FT friction force
F external force vector
g state function
HjðyÞ the j-order Hermite polynomials
k1 stiffness coefficient of the shaft
k2 stiffness coefficient of the stator
kr the stator radial stiffness coefficient
K shaft stiffness matrix
Kr stator radial stiffness matrix
m1 mass of the disk
m2 mass of the stator
M mass matrix
P probability function
q displacement vector
’qq velocity vector
.qq acceleration vector
r relative radial displacement between the rotor and the stator
R reliability
x1; y1 the co-ordinate of the center of the rotor

x2; y2 the co-ordinate of the center of the stator
b reliability index
d the radial clearance between the rotor and the stator
e small parameter
Z fourth order moment
y third order moment
m mean value
s standard variance
o the rotor speed
F standard normal distribution function
� the Kronecker product
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